Teléfono: +34 876 555 485
Email: srenda@unizar.es
Dirección: Despacho 3.1.11 c/Mariano Esquillor SN Edificio I+D+i, I3A, 50018, Zaragoza (Spain)
Sideral: Ver el perfil (CV)
SOBRE MÍ
Simona Renda es una investigadora postdoctoral especializada en temas de catálisis heterogénea e ingeniería química. Desde junio 2023 trabaja con el Grupo de Catálisis e Ingeniería de Reactores (CREG) en la Universidad de Zaragoza (España) en procesos de destilación con membrana y modelado de reactores de lecho fluidizado para la síntesis de dimetil éter.
Consiguió el título de doctora en ingeniería industrial (curriculum ingeniería química) en la Universidad de Salerno (Italia) el 23/02/2023 con un proyecto financiado por la empresa KT-Kinetics Technology (Roma, Italia) del grupo internacional Maire Tecnimont. Está especializada en estudios de catalizadores para la intensificación de procesos de hidrogenación de CO2 e hidrólisis de COS, tema en el cual está enfocada su tesis doctoral, titulada “Structured catalysts for COS hydrolysis process intensification” (ISBN: 88-7897-140-5, bajo 1 año de embargo por confidencialidad).
Hasta septiembre 2023, Simona Renda es autora de 23 publicaciones indexadas y tiene un h-index de 9 (Scopus®).
Orcid: https://orcid.org/0000-0002-5926-5252
Scopus: https://www.scopus.com/authid/detail.uri?authorId=57212381756
PUBLICACIONES
2026
González-Pizarro, R.; Calero-Berrocal, R.; Lasobras, J.; Renda, S.; Rodríguez-Pardo, M. R.; Soler, J.; Menéndez, M.; Herguido, J.
Tuning e-fuel selectivity in sorption-enhanced CO2 hydrogenation over In2O3/ZrO2: The effect of LTA and FAU zeolites Artículo de revista
En: Fuel, vol. 406, pp. 136974, 2026, ISSN: 0016-2361.
@article{GONZALEZPIZARRO2026136974,
title = {Tuning e-fuel selectivity in sorption-enhanced CO2 hydrogenation over In2O3/ZrO2: The effect of LTA and FAU zeolites},
author = {R. González-Pizarro and R. Calero-Berrocal and J. Lasobras and S. Renda and M. R. Rodríguez-Pardo and J. Soler and M. Menéndez and J. Herguido},
url = {https://www.sciencedirect.com/science/article/pii/S0016236125026997},
doi = {https://doi.org/10.1016/j.fuel.2025.136974},
issn = {0016-2361},
year = {2026},
date = {2026-01-01},
journal = {Fuel},
volume = {406},
pages = {136974},
abstract = {The e-fuels synthesis via CO2 hydrogenation and the Sorption Enhanced Reaction technology are captivating strategies for CO2 utilization and the integration of renewable energy sources. This study focuses on enhancing the conversion of CO2 over an In2O3/ZrO2 catalyst by incorporating LTA zeolites (3A and 4A) and a FAU zeolite (13X). Key operational parameters, such as temperature (T), Gas Hour Space Velocity (GHSV), type of zeolite, and Zeolite: Catalyst mass ratio (Z/C), were systematically varied. LTA zeolites (3A and 4A) provided the highest CO2 conversions. The introduction of a water-adsorbing solid into the reactor significantly altered the products yield and selectivity. While the selectivity towards CH4, CH3OH, and C2H6O appeared to lay on the type of zeolite, the selectivity towards CO remained unaffected. Zeolite 3A demonstrated the greatest enhancement in selectivity towards CH4 and CH3OH, whereas the synthesis of C2H6O was favored by zeolites 4A and 13X. The Zeolite:Catalyst mass ratio also played a crucial role in process performance, influencing both CO2 conversion and product selectivity. Increasing this ratio improved CO2 conversion and reduced CO selectivity under all operating conditions, while CH4 selectivity increased. However, the selectivity toward CH3OH and C2H6O exhibited an anomalous and complementary behavior. While a maximum was observed for DME, a minimum was registered in methanol production, suggesting a dependency of the dehydration reaction kinetics on the amount of water produced during the reaction.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Renda, Simona; Soler, Jaime; Menéndez, Miguel; Herguido, Javier
Doped In2O3/ZrO2 catalysts to drive selectivity toward DME in one-pot CO2 hydrogenation Artículo de revista
En: Applied Catalysis A: General, vol. 710, pp. 120682, 2026, ISSN: 0926-860X.
@article{RENDA2026120682,
title = {Doped In2O3/ZrO2 catalysts to drive selectivity toward DME in one-pot CO2 hydrogenation},
author = {Simona Renda and Jaime Soler and Miguel Menéndez and Javier Herguido},
url = {https://www.sciencedirect.com/science/article/pii/S0926860X25005848},
doi = {https://doi.org/10.1016/j.apcata.2025.120682},
issn = {0926-860X},
year = {2026},
date = {2026-01-01},
journal = {Applied Catalysis A: General},
volume = {710},
pages = {120682},
abstract = {This study investigates single-pass dimethyl ether synthesis at mild pressure conditions using novel bifunctional catalysts based on indium-modified formulations and incorporating Ni, Cu, Pt, and Pd as active metals. Additionally, the substitution of the conventional HZSM-5 zeolite with 4A zeolite as the dehydration component was evaluated. Although 4A zeolite exhibited lower dehydration activity, it contributed to an overall improvement in DME selectivity. The incorporation of secondary metals into the In2O3-ZrO2 formulation reduced catalytic activity but enhanced selectivity, ultimately increasing DME yield. The formation of by-products such as light olefins and methane was significantly dependent on the metal used: Ni, Pt, and Pd reduced olefin production, though Ni promoted excessive methane formation across the whole temperature range. Notably, the Pt-based catalyst completely suppressed by-product formation across the temperature range studied. While the In2O3-ZrO2-based catalysts generally displayed lower space–time yields than the commercial reference, they achieved comparable performance at 280 °C. Due to their superior selectivity, these formulations are promising for developing even better performing catalysts, to be excellent candidates in industrial processes, where the operation with recycle loops requires a high product purity.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2025
González Pizarro, Rodrigo; Lasobras Laguna, Javier; Renda, Simona; Soler Herrero, Jaime; Menéndez, Miguel; Herguido, Javier
Intensificación del proceso para la producción de gas de síntesis via (LT-rWGS): un reactor de lecho fluidizado con alimentación continua de sorbente (CSF) Actas de congresos
vol. 13, 2025.
@proceedings{GonzálezPizarro_LasobrasLaguna_Renda_SolerHerrero_Menéndez_Herguido_2025,
title = {Intensificación del proceso para la producción de gas de síntesis via (LT-rWGS): un reactor de lecho fluidizado con alimentación continua de sorbente (CSF)},
author = {González Pizarro, Rodrigo and Lasobras Laguna, Javier and Renda, Simona and Soler Herrero, Jaime and Menéndez, Miguel and Herguido, Javier},
url = {https://papiro.unizar.es/ojs/index.php/jji3a/article/view/11917},
doi = {10.26754/jji-i3a.202511917},
year = {2025},
date = {2025-07-01},
urldate = {2025-07-01},
journal = {Jornada de Jóvenes Investigadores del I3A},
volume = {13},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Saraceno, Emilia; Renda, Simona; Menéndez, Miguel; Palma, Vincenzo
Study on the Fluidization of Mixture of Plastic Waste and Alumina Actas de congresos
vol. 13, 2025.
@proceedings{Saraceno_Renda_Menéndez_Palma_2025,
title = {Study on the Fluidization of Mixture of Plastic Waste and Alumina},
author = {Saraceno, Emilia and Renda, Simona and Menéndez, Miguel and Palma, Vincenzo},
url = {https://papiro.unizar.es/ojs/index.php/jji3a/article/view/12010},
doi = {10.26754/jji-i3a.202512010},
year = {2025},
date = {2025-07-01},
urldate = {2025-07-01},
journal = {Jornada de Jóvenes Investigadores del I3A},
volume = {13},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Renda, Simona; Soler, Jaime; Herguido, Javier; Menéndez, Miguel
Effect of particles size and density on the segregation of catalyst-sorbent mixtures for direct sorption-enhanced DME synthesis: Experimental and mathematical study Artículo de revista
En: Biomass and Bioenergy, vol. 197, pp. 107764, 2025, ISSN: 0961-9534.
@article{RENDA2025107764,
title = {Effect of particles size and density on the segregation of catalyst-sorbent mixtures for direct sorption-enhanced DME synthesis: Experimental and mathematical study},
author = {Simona Renda and Jaime Soler and Javier Herguido and Miguel Menéndez},
url = {https://www.sciencedirect.com/science/article/pii/S0961953425001758},
doi = {https://doi.org/10.1016/j.biombioe.2025.107764},
issn = {0961-9534},
year = {2025},
date = {2025-01-01},
journal = {Biomass and Bioenergy},
volume = {197},
pages = {107764},
abstract = {Direct sorption-enhanced dimethyl ether synthesis (SEDMES) is a promising process for the production of fuels from CO2 sources. Using novel technologies, the process can be run exploiting the phenomena of particles segregation in a fluidized bed reactor. However, the knowledge on the solid movement and the segregation patterns is a mandatory preliminary step for the setup of the final application. In this study, we evaluated the impact of particles size and density on the segregation patterns, and we used the Gibilaro and Rowe (GR) model to analytically represent the experimental results. It was observed that the variation of both parameters influences segregation, even though a higher separation degree in a wider operating velocity range was observed when a higher density ratio was induced between the two solids. Through the experimental analysis, five possible bed configurations were identified, and a consideration was made on the aims of the GR model to adjust the mathematical representation to the present case. By considering the bottom portion of the bed as a jetsam-rich phase and not – as previously reported – as a segregated layer, a mass balance on the catalyst allowed to obtain a faithful analytical representation of the experimental segregation patterns.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}