Call: +34 876 555 486
Email: jlasobra@unizar.es
Address: Lab 4.1.12 c/Mariano Esquillor SN Edificio I+D+i, I3A, 50018, Zaragoza (Spain)
Sideral: See the profile (CV)
ABOUT ME
Graduate in Chemistry, Master in Research in Chemical Engineering and PhD in Chemical and Environmental Engineering from the University of Zaragoza.
Employee from the University of Zaragoza in the engineering and environment department and within the CREG group from 2009 to 2020 as a research support technician specialist and since 2020 as a collaborating doctor in various projects.
Research fields:
Catalysis: Synthesis, testing (catalyst activity, deactivation and regeneration) and characterization Reactions: methane aromatization, reforming, hydrogenation, selective oxidation. Reactors configurations: fixed bed, fluidized bed, two zones, with membrane.
Orcid: https://orcid.org/0000-0002-7488-6196
Scopus: https://www.scopus.com/authid/detail.uri?authorId=14056239300
PUBLICATIONS
2024
García Mateo, Nerea; Lasobras Laguna, Javier; Romero Pascual, Enrique; Soler Herrero, Jaime; Herguido Huerta, Javier; Menéndez Sastre, Miguel
vol. 12, 2024.
@proceedings{GarcíaMateo_LasobrasLaguna_RomeroPascual_SolerHerrero_HerguidoHuerta_MenéndezSastre_2024,
title = {Preparation and characterization of adsorbents in a CO2 hydrogenation process with a fluidized bed reactor for the synthesis of methanol},
author = {García Mateo, Nerea and Lasobras Laguna, Javier and Romero Pascual, Enrique and Soler Herrero, Jaime and Herguido Huerta, Javier and Menéndez Sastre, Miguel},
url = {https://papiro.unizar.es/ojs/index.php/jji3a/article/view/10633},
year = {2024},
date = {2024-07-01},
urldate = {2024-07-01},
journal = {Jornada de Jóvenes Investigadores del I3A},
volume = {12},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Val Planells, María Edurne; Renda, Simona; Lasobras Laguna, Javier; Soler, Jaime; Herguido, Javier; Menéndez, Miguel
vol. 12, 2024.
@proceedings{ValPlanells_Renda_LasobrasLaguna_Soler_Herguido_Menéndez_2024,
title = {Estudio de segregación de sólidos aptos para la reacción de síntesis de dimetil éter por hidrogenación de CO2 en lecho fluidizado asistida por adsorbente},
author = {Val Planells, María Edurne and Renda, Simona and Lasobras Laguna, Javier and Soler, Jaime and Herguido, Javier and Menéndez, Miguel},
url = {https://papiro.unizar.es/ojs/index.php/jji3a/article/view/10679},
year = {2024},
date = {2024-07-01},
urldate = {2024-07-01},
journal = {Jornada de Jóvenes Investigadores del I3A},
volume = {12},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}
Ruiz-Gutiérrez, A.; Lasobras, J.; Menéndez, M.
Lindane removal by catalytic hydrodechlorination Journal Article
En: Applied Catalysis O: Open, vol. 188, pp. 206948, 2024, ISSN: 2950-6484.
@article{RUIZGUTIERREZ2024206948,
title = {Lindane removal by catalytic hydrodechlorination},
author = {A. Ruiz-Gutiérrez and J. Lasobras and M. Menéndez},
url = {https://www.sciencedirect.com/science/article/pii/S2950648424000348},
doi = {https://doi.org/10.1016/j.apcato.2024.206948},
issn = {2950-6484},
year = {2024},
date = {2024-01-01},
journal = {Applied Catalysis O: Open},
volume = {188},
pages = {206948},
abstract = {Lindane is an organochlorine pesticide, that has caused contamination of soil, water and air. This paper studies catalytic hydrodechlorination as a possible solution to the lindane problem in water streams. Several catalysts were tested. The effects of mass transfer and temperature was studied for a Ni-based and a Pt-based catalysts. A Ni-supported and a Pt-supported catalyst gave good results, but the best catalyst was Pd supported on active carbon, which provided 99% conversion in a few minutes at room temperature. Additional tests allow to discard adsorption instead of a catalytic effect. The amount of hexachlorocyclohexane compounds remaining as adsorbed on the catalyst surface was negligible.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Zhu, Kunmeng; Gao, Fuwei; Zhao, Zhiyang; Ren, Jian; Lasobras, Javier; Shen, Xiaodong; Cui, Sheng; Menéndez, Miguel
En: Journal of Alloys and Compounds, vol. 971, pp. 172535, 2024, ISSN: 0925-8388.
@article{ZHU2024172535,
title = {Ultra-high specific surface area spherical FePOx/SiO2 aerogel with excellent mechanical properties for the highly selective direct oxidation of CH4 to HCHO},
author = {Kunmeng Zhu and Fuwei Gao and Zhiyang Zhao and Jian Ren and Javier Lasobras and Xiaodong Shen and Sheng Cui and Miguel Menéndez},
url = {https://www.sciencedirect.com/science/article/pii/S0925838823038380},
doi = {https://doi.org/10.1016/j.jallcom.2023.172535},
issn = {0925-8388},
year = {2024},
date = {2024-01-01},
journal = {Journal of Alloys and Compounds},
volume = {971},
pages = {172535},
abstract = {Silica aerogels, characterized by their high porosity and substantial specific surface area, are suitable for applications as catalysts or catalyst supports. The simultaneous attainment of a substantial specific surface area and robust mechanical properties in aerogel materials remains a formidable challenge in material synthesis. Spherical FePOx/SiO2 aerogel materials were synthesized employing a combination of heating reflux, the sol-gel technique, and supercritical ethanol drying. These composites demonstrate an exceptional specific surface area, uniformly dispersed active components, shape controllability, and superior mechanical strength. A noteworthy enhancement in both specific surface area (1175 m2/g) and compressive modulus (7.56 MPa) surpasses many findings reported in extant literature. Under conditions of a reaction temperature at 650 °C and a flow rate of 97.5 mL/min, the HCHO selectivity and yield for 4 wt% FePOx/SiO2 aerogel were 18.3 and 4.2 times, respectively, higher than those of 4 wt% FePOx/SiO2 particles. These composites manifest significant selectivity towards the direct catalytic oxidation of CH4 to HCHO.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Zapater, Diego; Lasobras, Javier; Zambrano, Naydu; Hita, Idoia; Castaño, Pedro; Soler, Jaime; Herguido, Javier; Menéndez, Miguel
En: Industrial & Engineering Chemistry Research, vol. 63, no. 8, pp. 3586-3599, 2024.
@article{doi:10.1021/acs.iecr.3c03956,
title = {Effect of Thermal, Acid, and Alkaline Treatments over SAPO-34 and Its Agglomerated Catalysts: Property Modification and Methanol-to-Olefin Reaction Performance},
author = {Diego Zapater and Javier Lasobras and Naydu Zambrano and Idoia Hita and Pedro Castaño and Jaime Soler and Javier Herguido and Miguel Menéndez},
url = {https://doi.org/10.1021/acs.iecr.3c03956},
doi = {10.1021/acs.iecr.3c03956},
year = {2024},
date = {2024-01-01},
journal = {Industrial & Engineering Chemistry Research},
volume = {63},
number = {8},
pages = {3586-3599},
keywords = {},
pubstate = {published},
tppubtype = {article}
}