
Call: +34 876555485
Email: paragues@unizar.es
Address: Lab 4.2.10 c/Mariano Esquillor SN Edificio I+D+i, I3A, 50018, Zaragoza (Spain)
Sideral: See the profile (CV)
ABOUT ME
Graduate (2020) and Master (2022) in Chemical Engineering, from the University of Zaragoza.
Currently undertaking a doctoral thesis, focused on chemical reactor engineering and process intensification, within the framework of hydrogen utilization for energy storage, after having carried out both the degree’s thesis and the master’s thesis in this field.
Orcid: https://orcid.org/0000-0001-6452-4258
Scopus: https://www.scopus.com/authid/detail.uri?authorId=57563880100
PUBLICATIONS
2025
Aragüés-Aldea, P.; Mercader, V. D.; Durán, P.; Francés, E.; Peña, J. Á.; Herguido, J.
Biogas upgrading through CO2 methanation in a multiple-inlet fixed bed reactor: Simulated parametric analysis Journal Article
En: Journal of CO2 Utilization, vol. 93, pp. 103038, 2025, ISSN: 2212-9820.
@article{ARAGUESALDEA2025103038,
title = {Biogas upgrading through CO2 methanation in a multiple-inlet fixed bed reactor: Simulated parametric analysis},
author = {P. Aragüés-Aldea and V. D. Mercader and P. Durán and E. Francés and J. Á. Peña and J. Herguido},
url = {https://www.sciencedirect.com/science/article/pii/S2212982025000228},
doi = {https://doi.org/10.1016/j.jcou.2025.103038},
issn = {2212-9820},
year = {2025},
date = {2025-01-01},
journal = {Journal of CO2 Utilization},
volume = {93},
pages = {103038},
abstract = {A simulation of the catalytic CO2 methanation reaction was carried out, evaluating the effect of reactants distributed feeding throughout the bed. The main operational parameters were studied in a multiple-inlet reactor to test their effect on conversions and, most importantly, on selectivities towards both CO and CH4 as reaction products. The analyzed parameters were, firstly, the number of feeding points (N) and the dosage degree of reactants, followed by temperature (T), partial pressures of reactants (H2:CO2 ratios), and the composition of a sweetened biogas as feeding stream (CH4:CO2 ratios). It is confirmed that a distribution of biogas through several side inlets improves selectivities to the desired CH4 product, over other feeding configurations. The effect of distributing reactants becomes intensified when the number of lateral feedings increases. This observation supports the experimental trends already proven in previous works. Regarding main operation parameters such as temperature and H2:CO2 molar ratio, the analysis confirmed that their influence on selectivities acts just as predicted at low conversions. However, when these conversions become higher the space velocity (WHSV) is the most important factor for selectivities. Finally, no significant changes in reaction performance were obtained when modifying the biogas CH4:CO2 ratio in the broad range of methane concentrations from 55 v% to 70 v%.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Mercader, V. D.; Aragüés-Aldea, P.; Durán, P.; Francés, E.; Herguido, J.; Peña, J. A.
Optimizing Sorption Enhanced Methanation (SEM) of CO2 with Ni3Fe + LTA 5 A mixtures Journal Article
En: Catalysis Today, vol. 453, pp. 115262, 2025, ISSN: 0920-5861.
@article{MERCADER2025115262,
title = {Optimizing Sorption Enhanced Methanation (SEM) of CO2 with Ni3Fe + LTA 5 A mixtures},
author = {V. D. Mercader and P. Aragüés-Aldea and P. Durán and E. Francés and J. Herguido and J. A. Peña},
url = {https://www.sciencedirect.com/science/article/pii/S092058612500080X},
doi = {https://doi.org/10.1016/j.cattod.2025.115262},
issn = {0920-5861},
year = {2025},
date = {2025-01-01},
journal = {Catalysis Today},
volume = {453},
pages = {115262},
abstract = {This study investigates the integration of catalytic CO2 methanation and water adsorption using a Ni-Fe-based catalyst and LTA 5 A zeolite to enhance methane production via the Sabatier reaction. By mitigating thermodynamic limitations through in situ water removal, the research explores key operational parameters, including temperature, space velocity, and H₂:CO₂ feed ratios, to optimize process performance. The findings highlight that a temperature of 300 °C, a WHSV of 1.50 × 104 (STP) mL·gcat−1·h−1 (4.86 gCO2·gcat⁻¹·h⁻¹), and a H₂:CO₂ molar ratio equal to 5:1, result in enhanced methane yields, shifting thermodynamic equilibrium due to water sorption during initial stages. The presence of methane in the feed, representative of a biogas, demonstrated negligible effects on methane yields under optimal conditions, underscoring the method’s feasibility for direct biogas upgrading. While the process achieved significant intensification, challenges such as loss of activity of the bed of solids (catalyst plus water adsorbent) were identified, necessitating further advancements in both catalyst and adsorbent stability, as well as a deeper study on their interaction. The study provides a pathway for scaling up adsorption-enhanced methanation technologies to achieve renewable methane production, addressing the dual goals of carbon management and energy storage.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Sanz-Monreal, P.; Mercader, V. D.; Aragüés-Aldea, P.; Durán, P.; Francés, E.; Herguido, J.; Peña, J. A.
Techno-economic assessment of a plant for the upgrading of MSW biogas to synthetic natural gas by thermocatalytic methanation Journal Article
En: Biomass and Bioenergy, vol. 198, pp. 107871, 2025, ISSN: 0961-9534.
@article{SANZMONREAL2025107871,
title = {Techno-economic assessment of a plant for the upgrading of MSW biogas to synthetic natural gas by thermocatalytic methanation},
author = {P. Sanz-Monreal and V. D. Mercader and P. Aragüés-Aldea and P. Durán and E. Francés and J. Herguido and J. A. Peña},
url = {https://www.sciencedirect.com/science/article/pii/S096195342500282X},
doi = {https://doi.org/10.1016/j.biombioe.2025.107871},
issn = {0961-9534},
year = {2025},
date = {2025-01-01},
journal = {Biomass and Bioenergy},
volume = {198},
pages = {107871},
abstract = {This study evaluates the techno-economic feasibility of a plant designed to produce synthetic natural gas (SNG) from biogas through direct catalytic methanation. The proposed facility is simulated with Aspen Plus® v14, using a comprehensive approach that covers the entire process, from biogas pretreatment to the production of the final product. The installation aims to contribute to the development of Power-to-Gas (Power-to-Methane) strategy for decarbonization. The plant, to be located in northeastern Spain, operates at an industrial scale with a production capacity of approximately 1100 Nm3/h of SNG, obtained from a 1425 Nm3/h biogas plant. The process includes five main stages to meet Spanish gas quality standards for grid injection: desulfurization, using amines for sulfur removal; electrolysis, for the generation of renewable hydrogen; thermocatalytic methanation, which combines CO2 from the biogas with hydrogen to enrich the methane content; dehydration, to meet SNG moisture specifications; and cogeneration, intended for the joint production of electricity and steam to meet the plant's energy demands. A detailed analysis of investment costs (CAPEX) and operational expenses (OPEX) is conducted, identifying the key factors influencing the project's profitability. The economic assessment indicates a total capital investment of 21.83 M€ and operational expenses nearly 8 M€ annually. The profitability threshold for the base scenario is estimated at 91.75 €/MWh, exceeding the 2023 natural gas market average in the Iberic peninsula (39.11 €/MWh), highlighting the current economic challenges of SNG production.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Aragüés-Aldea, P.; Pizarro, R. G.; Durán, P.; Mercader, V. D.; Francés, E.; Peña, J. A.; Herguido, J.
Catalytic CO2 methanation for biogas upgrading using a polytropic fixed bed reactor Journal Article
En: Catalysis Today, vol. 457, pp. 115351, 2025, ISSN: 0920-5861.
@article{ARAGUESALDEA2025115351,
title = {Catalytic CO2 methanation for biogas upgrading using a polytropic fixed bed reactor},
author = {P. Aragüés-Aldea and R. G. Pizarro and P. Durán and V. D. Mercader and E. Francés and J. A. Peña and J. Herguido},
url = {https://www.sciencedirect.com/science/article/pii/S0920586125001695},
doi = {https://doi.org/10.1016/j.cattod.2025.115351},
issn = {0920-5861},
year = {2025},
date = {2025-01-01},
journal = {Catalysis Today},
volume = {457},
pages = {115351},
abstract = {The experiments of this study aim to determine the effect of distributed feeding of reactants throughout the many inlets of a polytropic fixed bed reactor. The effect of dosing either carbon dioxide or hydrogen, was analyzed on the Sabatier reaction (i.e., carbon dioxide methanation) using a Ni-Mn catalyst to carry out the biogas upgrading process. This work analyzes the influence of three feeding configurations (a conventional fixed bed, one with side distribution of biogas, and another with side distribution of hydrogen) and temperatures (350, 375, and 400 °C) for a wide gas hourly space velocity (GHSV) range from 30 × 103 (STP) mL gcat−1 h−1 to more than 200 × 103 (STP) mL gcat−1 h−1. The molar ratios of reactants were always kept constant (H2:CH4:CO2 = 12:7:3) simulating the hydrogenation of the CO2 present in a biogas with a proportion of 70 v% of CH4 and 30 v% of CO2. The empirical results highlight that side distribution of biogas yields improved results over those obtained in a conventional fixed bed reactor, or the one with side distribution of hydrogen. At temperatures of 375 and 400 °C, this feeding configuration brings higher conversions than the other two, while consistently shows greater selectivities to methane for all the conditions tested. As such, its optimal condition to conduct the process is extended to methane space-time yields (STY), for which the highest methane productions are obtained. In addition, the influence of contact time, or GHSV, was determined to be critical both on selectivities and flowrates of methane. It is shown that for a given conversion value, keeping constant all the other parameters, a longer contact time and lower temperature result in an improvement of selectivities to methane. On the other hand, it also affects STY values, where an optimum between the employed flows of reactants and reaction performances is reached at a value of 180 × 103 (STP) mL gcat−1 h−1, independently of experimental conditions.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
González Pizarro, Rodrigo; Durán Sánchez, Paúl; Aragüés Aldea, Pablo; Mercader Plou, Victor; Francés, Eva; Peña Llorente, José Ángel; Herguido Huerta, Javier
vol. 12, 2024.
@proceedings{GonzálezPizarro_DuránSánchez_AragüésAldea_MercaderPlou_Francés_PeñaLlorente_HerguidoHuerta_2024,
title = {Enriquecimiento de biogás por metanación de CO2 sobre Ni-MnxOy en reactor de lecho fijo con alimentación distribuida},
author = {González Pizarro, Rodrigo and Durán Sánchez, Paúl and Aragüés Aldea, Pablo and Mercader Plou, Victor and Francés, Eva and Peña Llorente, José Ángel and Herguido Huerta, Javier},
url = {https://papiro.unizar.es/ojs/index.php/jji3a/article/view/10682},
year = {2024},
date = {2024-07-01},
urldate = {2024-07-01},
journal = {Jornada de Jóvenes Investigadores del I3A},
volume = {12},
keywords = {},
pubstate = {published},
tppubtype = {proceedings}
}